
Critical Zone Managers’ Implementation Guidelines

DNS Security

1. Practice 1: Authoritative zones MUST be DNSSEC signed and best practices for key
management MUST be followed.

If you are a ccTLD zone manager/operator, the ICANN DNSSEC guidebook for ccTLDs
may be helpful.

General Implementation Considerations:

Actually getting a zone DNSSEC signed requires the following steps. Note: Two pairs of
public/private keys are typically used: a Zone Signing Key (ZSK), which is used to sign
zone records themselves (zone data), and a Key Signing Key (KSK), which only signs
the ZSK.

1. Generate keys - usually a ZSK and KSK as described above
2. Include the public part of the ZSK and KSK in the zone (DNSKEY RRset)
3. Decide on a scheme for proof of non-existence: NSEC or NSEC3
4. Sign the zone data using the private part of the ZSK

- For all records in the zone, including TTL value and type, a digital
signature is created (hash data + encrypt with ZSK private key)

- RRSIG records are added for each RRset (same name + type)
- NSEC/NSEC3 records are added

5. Sign the DNSKEY RRset with the KSK

Once the above has been done, the KSK must be communicated to the managers of the
parent zone so that it (actually the hash, in the form of a DS record) can be added to the
parent zone and signed using the parent zone’s ZSK.

Signatures have a fixed lifetime and must be renewed/recreated before they expire.
Typically, the validity of signatures is anywhere between two and four weeks.

Note that most modern DNS authoritative software is able to do all this for you. In the
notes below, we cover the simplest possible configuration for a fully automated DNSSEC
zone signing. Also, be aware that it’s not mandatory to have two keypairs (ZSK and
KSK); it’s also possible to use a Single Type Signing Scheme, with one Combined
Signing Key (CSK) used for signing records and also deriving the DS record to be
included in the parent zone. While there are advantages to using a single key (CSK), it
does mean that rolling the key for signing zone records forces an update of the DS in the
parent zone as well.

https://www.icann.org/en/system/files/files/octo-029-12nov21-en.pdf

Note that if managing a TLD, management of the DS, just like the NS, is done using the
IANA RZM portal.

BIND:

The current preferred method for signing zones with BIND is described at
https://bind9.readthedocs.io/en/v9_18_5/dnssec-guide.html, as well as
https://kb.isc.org/docs/dnssec-key-and-signing-policy.

Here is an example for a fully automated DNSSEC zone signing setup with BIND9. It
assumes that BIND has write access to the zone directory so it can make the necessary
updates to the zone journal and manage keys.

zone “example.com” {
type primary;
file “...”;
dnssec-policy default;

};

From the BIND documentation:

 The dnssec-policy statement causes the zone to be signed and turns on
automatic maintenance for the zone. This includes re-signing the zone as
signatures expire and replacing keys on a periodic basis. The value
default selects the default policy, which contains values suitable for most
situations.

Note: this is a very minimal setup. Please consult the full BIND9 DNSSEC Guide
(above link). Also note that in this case, a single key is used (CSK).

PowerDNS:

PowerDNS has several modes of operations. Online (or live) and front-signing are most
relevant. The simplest is by far “Online mode,” where PowerDNS manages all zone data
and key material, and signatures are generated on-the-fly. This is the default mode, and
makes the most sense if you are already managing your zone data using PowerDNS.

Front-signing enables PowerDNS to act as a “front-end” authoritative server, fetching an
unsigned zone from a primary server. PowerDNS handles all key material and signs the
records on-the-fly, as for online mode. This is especially useful if the zone is being
served by a legacy DNS platform that isn’t DNSSEC-capable and cannot easily be
migrated or replaced (e.g., older Windows DNS).

https://bind9.readthedocs.io/en/v9_18_5/dnssec-guide.html
https://kb.isc.org/docs/dnssec-key-and-signing-policy
https://bind9.readthedocs.io/en/v9_18_5/dnssec-guide.html

PowerDNS can also be configured to act as a “hidden SOA,” where the zone is signed
but PowerDNS isn’t serving the zone to the wider Internet. Instead, one or more
authoritative servers are configured as secondaries to the zone, fetching the primary
copy from the PowerDNS Online signing instance.

For more details, see the PowerDNS Authoritative Nameserver reference.

Windows DNS:

Unfortunately, Microsoft no longer offers up-to-date guidance on deploying DNSSEC on
Windows Server. The last update is for Windows 2012r2, published in 2016. As a result,
we cannot currently provide BCPs on deploying DNSSEC for authoritative zones on
Windows Server.

2. Practice 2: Access to zone transfer between authoritative servers MUST be limited.
Configure ACLs and TSIG in the DNS Authoritative software package to restrict zone
transfers to secondary servers only.

General Implementation Considerations:

Limit access to AXFR/IXFR so that only secondary DNS servers are allowed to request a
copy of the zone, as well as any other authorized third parties. This may be for research
purposes, monitoring/verification of the publication of zone content, etc.

BIND:

At a minimum, use IP access lists to restrict who may transfer zones:

acl “secondaries” {
1.2.3.4;
10.20.30.0/24;
localnets;

};

options {
allow-transfer { secondaries; 127.0.0.1; ::1; };

};

It’s recommended to use TSIG, and to use a key for each pair of host:

tsig-keygen them-us

Output:

https://doc.powerdns.com/authoritative/dnssec/modes-of-operation.html

key "them-us" {
algorithm hmac-sha256;
secret "xw5I/zKwmJHQulWA3vDNGn4kdBNgsmIhqrjxqMvv5Cs=";

};

zone “example.com” {
type master;
file “.../example.com”;
allow-transfer { key “them-us”; };

};

Note that keys can also be used in allow-transfer in the options section.
(applies to all zones unless specified individually).

PowerDNS:

In PowerDNS Authoritative, per-zone ACLs are managed using the `pdnsutil set-meta`
command. An example would be:

$ pdnsutil set-meta example.org ALLOW-AXFR-FROM AUTO-NS
192.0.2.0/24

In this example, the subnet 192.0.2.0/24 as well as all the listed secondary servers for
the zone (defined by NS records in the zone) would be authorized to perform a zone
transfer of “example.org”. AUTO-NS is a special value meaning “all secondary
authoritative servers”.

More info is available at the PowerDNS Authoritative documentation site.

To implement TSIG for outbound AXFR access (i.e.: PowerDNS Authoritative will only
allow secondaries that use a matching TSIG key to perform a zone transfer), do the
following:

$ pdnsutil import-tsig-key them-us hmac-md5
'xw5I/zKwmJHQulWA3vDNGn4kdBNgsmIhqrjxqMvv5Cs='

$ pdnsutil activate-tsig-key example.org them-us master

As noted in the PowerDNS Authoritative documentation for configuring TSIG, any host
with the right TSIG key will be able to perform an AXFR of the zone, regardless of the
metadata values for ALLOW-AXFR-FROM for the given zone.

This can be surprising when comparing with BIND, where both IP and TSIG key-based
restrictions can be implemented at the same time, on a per-zone basis.

https://doc.powerdns.com/authoritative/domainmetadata.html
https://doc.powerdns.com/authoritative/tsig.html

Windows DNS:

To restrict which IP addresses are allowed to perform a zone transfer from a Windows
DNS server, see the Microsoft documentation:

1. “In the DNS Manager, right-click the name of the DNS zone and click Properties.
2. On the Zone Transfers tab, click Allow zone transfer.
3. Select Only to the following servers.
4. Click Edit, then in the IP addresses of the secondary servers list, enter the IP

addresses of the servers you wish to specify.
5. When you have entered all the required IP addresses, click OK.”

Alternatively, this can be done using the `dnscmd` command-line tool:

dnscmd ns1.example.org /zoneresetsecondaries example.org
/securelist 192.0.2.2

Unfortunately, Windows DNS does not support plain TSIG for restricting zone transfers
as described in RFC 8945. Active Directory-enabled Windows DNS servers use another
mechanism for replicating DNS zone content with each other. Another solution could be
to use IPsec.

3. Practice 3: Zone file integrity MUST be controlled to avoid unexpected modifications
(malicious or accidental).

General Implementation Considerations:

There are multiple approaches to this. For example, for static zones this could be done
using the ZONEMD (RFC 8976) message digest and Resource Record, or existing
revision control/versioning procedures, if those are implemented (see Host and Service
security). If the zone is dynamic, and producing a message digest for the entire zone is
impractical due to size or rate of change, revision control (git/svn/other) and versioning
should allow auditing to narrow down when a given error or malicious change was
introduced. This is assuming that zones are stored (or exported) as files before being
imported into a VCS (version control system) such as Git.

For a more general explanation of message digests in DNS as defined in RFC 8976, see
this presentation.

BIND:

While BIND9 does correctly parse and serve ZONEMD records, the actual calculation of
the hash is done with a third-party implementation. At the time of this writing, there are

https://docs.microsoft.com/en-us/services-hub/health/remediation-steps-ad/configure-all-dns-zones-only-to-allow-zone-transfers-to-specified-ip-addresses
https://datatracker.ietf.org/doc/html/rfc8945
https://datatracker.ietf.org/doc/html/rfc8976
https://www.icann.org/en/system/files/files/presentation-day3d-message-digest-wessels-27may21-en.pdf

three known implementations mentioned in RFC 8976.

One suggested tool is Verisign’s ldns-zone-digest.

See the Appendix for installation.

PowerDNS:

PowerDNS zone records typically reside in a database backend, and there is currently
no provision in the PowerDNS Authoritative server to generate the ZONEMD hash. One
would have to set up a secondary, pulling the zone from the PowerDNS authoritative via
AXFR, and add the ZONEMD.

Windows DNS:

Windows DNS does not support ZONEMD.

DNS Availability and Resilience

4. Practice 4: Authoritative and recursive DNS service MUST NOT coexist on the same
DNS server. In the context of authoritative servers, this means you MUST disable
recursive DNS resolution on servers configured to serve authoritative DNS data (if the
software allows running both authoritative and recursive at the same time).

General Implementation Considerations:

Dedicated DNS recursive resolvers should be set up separately from the authoritative
nameservers, as illustrated in the diagram below. Ideally, the recursive name servers will
not be reachable from the wider Internet (see the corresponding BCPs on Network and
Service security using ACLs), possibly on private IP space. If necessary, stub or forward
type zones can be configured on the resolvers for important zones required for critical
network functions and services to operate, in the event of a loss of Internet connectivity
(e.g., VoIP, internal messaging/email communication).

https://github.com/verisign/ldns-zone-digest

If recursion is disabled in this way, it will be necessary to set up one or more dedicated
recursive DNS servers.

BIND:

Disable recursion on a BIND9 name server:

options {
recursion no;

};

If a new, dedicated recursive name server is set up to service the clients that were
previously pointing to the mixed Authoritative/Recursive server, it may be necessary to
set up forward or stub zones if the zones are not publicly resolvable.

Windows DNS:

If Windows DNS was set up as part of the creation of an Active Directory domain, then
all AD-integrated DNS servers will by default also offer recursive DNS resolution to
clients of the domain. Public-facing servers running critical/TLD zones on Windows DNS
must not have recursive service enabled. If any clients are configured to use these
servers as resolvers, set up a dedicated recursive service for them. Stub/forward zones
can be set up on the recursive service to point to the authoritative zones on the existing
service if necessary.

Starting in Windows 2016, it should be possible to set up a policy restricting recursion to
client subnets, according to
https://docs.microsoft.com/en-us/windows-server/networking/dns/deploy/dns-policies-ov
erview - but our team hasn’t tested that.

PowerDNS:

PowerDNS Authoritative and PowerDNS Recursor are distinct products - it’s not possible
to offer authoritative and recursive on the same platform by design.

5. Practice 5: At least two distinct nameservers MUST be used for any given zone. Note
that this is usually a requirement when registering domain names in most TLDs (gTLD,
ccTLD, …).

General Implementation Considerations:

Remember that besides setting up additional authoritative nameservers and adding
them to the list of NS Resource Records in the zone, you will need to update the parent
zone as well!

https://docs.microsoft.com/en-us/windows-server/networking/dns/deploy/dns-policies-overview
https://docs.microsoft.com/en-us/windows-server/networking/dns/deploy/dns-policies-overview

Checklist to add an additional nameserver for a zone:
1. Configure additional server (OS, DNS software)
2. Configure existing primary server(s) to allow zone transfer of zone from the new

server (IP ACL, TSIG)
3. Configure new server to load the zone (or zones) from the existing primary

server(s) - and verify
4. Declare the additional nameserver in the zone on the primary server:

example.org. NS nsX.example.org.
5. Update delegation in parent zone (via registrar or registry, depending on the TLD

model – or if operating a TLD, via the IANA RZM portal) to reflect the additional
NS

In the figure below, notice how the additional nameserver is added both in the child zone
and in the parent zone, and how recursive queries are now sent to the new server once
it is published in the zone.

6. Practice 6: There MUST be diversity in the authoritative operations to promote
resilience.

a. Software Diversity: For a given zone, make sure all published nameservers
aren’t running the same authoritative DNS software package and version.

General Implementation Considerations:

Use software from two or more vendors - for instance, if running on Linux/UNIX, it
could be any of the following software packages: BIND, NSD, Knot Auth, or
PowerDNS. If you operate more than two nameservers, it would probably be
sufficient to choose two software packages to minimize complexity, but still
reduce exposure and possible downtime due to software vulnerabilities where all
services are affected at the same time.

Another solution is to use one or more third-party DNS operators to provide
hosting of secondary zones. It’s very likely that the contracted party (or parties)
run a different software platform from the one you’re already running (or at least,
a different revision), thereby providing diversity.

If it’s too impractical to run different software packages, or if it is absolutely
necessary to run the same version of the software package across all
nameservers (say, because of feature compatibility), ensure that you have a
mechanism by which you can upgrade/update the software packages while
minimizing downtime. This is both for regular maintenance schedules as well as
in the event of the sudden disclosure of a software vulnerability requiring
immediate patching.

One way to implement this could be using dnsdist as a load balancer, with
multiple servers in the backend. It becomes possible to add/remove DNS
backend servers as they are upgraded without affecting operation, even mixing
different software packages. Note that while the use of load-balancing software is
normally discouraged, dnsdist is built from the ground up as a high-performance,
abuse-aware DNS frontend.

b. Network Diversity: For a given zone, make sure all authoritative servers are not
placed within the same Autonomous System (AS) or within the same subnet.

General Implementation Considerations:

There are multiple ways to achieve this - but the guidelines are as follows: if all
nameservers are within the same subnet, even if they are placed in different
physical locations (either individually routed at layer 3, or a distributed L2

https://dnsdist.org/

network), there is a risk that a misconfiguration in a BGP configuration for the
enclosing prefix would see connectivity to all nameservers be lost simultaneously.

If all nameservers are located within different subnets, at least one should be
announced from a different AS to avoid similar problems as described above.
This can be achieved by using a third-party operator hosting secondary zones.

c. Geographical Diversity: For a given zone, make sure all the authoritative
servers are in different physical locations (not the same rack and room or city,
region, or country).

General Implementation Considerations:

While it’s obvious that having all servers (whether physical or virtual) co-located
within the same rack or room doesn’t allow for redundancy in case of a network
or power outage, it is a good idea to aim for a different colocation facility or
datacenter altogether for secondary servers - preferably in a different region or
country.

7. Practice 7: Monitoring of the services, servers, and network equipment that make up
your DNS infrastructure MUST be implemented.

General Implementation Considerations:

Examples of resources and services that should be monitored:

- Availability: does the DNS service answer?
- Example: On port 53 UDP and TCP, does the DNS server return data if

queried?
- Correctness: does the DNS service return the expected data?

- Example: Query for a name and resource record type (for instance:
www.example.org A, or example.org SOA), then check the result against
a known good value.

- Latency: does the service respond in a timely fashion?
- Example: How long does it take for the service to respond to the above

checks? It should be within a reasonable timeframe, say, less than 5ms
for most authoritative queries, and probably less than 200-300ms for
recursive queries. Account for the time it takes to fetch an answer if not
already in the cache, and the network latency (round trip) between the
monitoring service and the DNS service you are testing.

The above three tests can be performed as a single check using most monitoring
platforms/services.

Example with the Nagios plugin, check_dig:

check_dig -4 -H a.icann-servers.net -l www.icann.org -w 2 -c 5 -a \
www.vip.icann.org

The queried server is a.icann-servers.net, using IPv4 (‘-4’). The queried name is
‘www.icann.org’. The settings -w 2 and -c 5 set a warning and critical threshold if the
server hasn’t responded before 2 and 5 seconds have elapsed, respectively. -a is the
expected result, in this case ‘www.vip.icann.org’. We don’t set a queried record type (-T),
so it defaults to A.

Example output:

DNS OK - 0.123 seconds response time (www.icann.org. 3600 IN CNAME
www.vip.icann.org.)|time=0.122713s;2.000000;5.000000;0.000000

- Synchronization: i=Is the zone data identical across all name server instances
(SOA/serial check, for example)?

- Example: One could implement a check using check_dig to ensure that all
nameservers for a given zone have the same serial number. Alternatively,
one could use a third-party plugin such as “check-dns-serial”, available at
https://exchange.nagios.org/directory/Plugins/Network-Protocols/DNS/Ch
eck-DNS-Serial/details

The same techniques apply for monitoring the availability and reachability of
intermediate network devices - ICMP checks are often enough in most cases to detect
failure of a router or switch in front of a DNS server.

If monitoring with a third-party service, there are many online providers which provide
remote monitoring of availability and reachability.

https://exchange.nagios.org/directory/Plugins/Network-Protocols/DNS/Check-DNS-Serial/details
https://exchange.nagios.org/directory/Plugins/Network-Protocols/DNS/Check-DNS-Serial/details

